Potentials for linear prolate and oblate

- symmetric about $\theta = \pi/2$ (in contrast to μ_0-Interaction)
- as $|M|$ increases $|\Psi(\theta = 0, \pi)|^2$ decreases (centrifugal contribution)
- prolate \rightarrow double well
 \Rightarrow for each $|M|$: pairing of levels (tunneling)
Pendular states in Symmetric Tops

W. Kim, P. M. Felker, JCP 108, 6763 (1998); JCP 104, 1147 (1996)

- Schrödinger equation similar as for linear rotor:

\[
\left[\frac{d}{dz} \left[(1 - z^2) \frac{d}{dz} \right] - \frac{1}{(1-z^2)} \left(M^2 + K^2 - 2MK \cos \theta \right) + \lambda_{n,M,K} + c^2z^2 \right] F_{n,M,K} = 0
\]

Eigenvalues: \(E_{n,M,K} = B\lambda_{n,M,K} - B\alpha_\perp \varepsilon_0^2/4B + (A(C) - B)K^2 \)

- \(M, K \): good quantum number; for given set of \(M, K \) more than one solution \(\rightarrow n \) as integer

- Eigenfunctions expanded in symmetric-top free-rotational eigenfunctions:

\[
\Psi(\varphi, \theta, \chi) \propto F_{n,M,K} e^{iM\varphi} e^{iK\chi} = |nMK\rangle = \sum_J \ldots
\]

- analytical solution feasible if \(c^2 \gg 1 \Rightarrow \text{different characteristics} \) for Prolate and Oblate
Pendular states – Oblate versus Prolate

Oblate

- Eigenfunctions F: independent of M and K, no restriction for n
- Eigenvalues:
 $$E_{nMK} = CK^2 + B \left[-\frac{\alpha + \varepsilon_0^2}{4B} + (2n + 1)i\epsilon + M^2 - \frac{(2n^2 + 2n + 3)}{4} \right]$$
 - infinite number of \{M, K\}-manifolds
 - for $M, K \neq 0$: four manifolds coincide

Prolate

- Eigenfunctions F: two types of solutions (double well !) characterized by $n - |M - K| = 0, 2, 4, \ldots$ and $n - |M + K| = 0, 2, 4, \ldots$
 - dependent on M and K, n quantum number restricted
- Eigenvalues:
 $$E_{nMK} = AK^2 + B \left[-\frac{\alpha ||\varepsilon_0||}{4B} + (2n + 1)c + \frac{M^2}{2} - \frac{K^2}{2} - \frac{(n+1)^2}{2} - \frac{1}{2} \right]$$
 - particular pair of M and K: two submanifolds, offset in energy levels
 - for $M, K \neq 0$: $|M|$ or $|K|$ (whichever is smaller) states that are fourfold degenerated, all other states eightfold degenerated (for finite $c \to$ mixed states through tunneling)
Pendular states — Eigenfunctions

\[F_n(\theta) \] (oblate)

level structure for prolate

\[F_{nMK}(\theta) \] (prolate, \(|M - K|\)-manifold)

\[\text{sign}(M) = \text{sign}(K) \]
Pendular states – Spectroscopy

- Dipole allowed vibrational or vibronic transitions

⇒ matrix elements: \(\langle v'; n'M'K'\Pi'|\vec{\mu}|v; nMK\Pi \rangle \)

\((\Pi, \Pi': \text{submanifolds in prolate case})\)

Oblate

| Selection Rules \((\Delta |M|, \Delta |K|)\) | Propensity rules\(^a\) \(\Delta n\) | fig. |
|----------------|-----------------|-----|
| (0,0) | ±1 | a |
| (1,0) | 0 | b |
| (0,1) | 0 | c |
| (1,1) | 0, ±1 | d |

\(^a\Delta n\text{ with appreciable matrix element}\)

Prolate

<table>
<thead>
<tr>
<th>Selection Rules ((\Delta M, \Delta K))</th>
<th>Propensity rules (\Delta n)</th>
<th>fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>0, ±2</td>
<td>a</td>
</tr>
<tr>
<td>(± 1,0)</td>
<td>±1</td>
<td>b</td>
</tr>
<tr>
<td>(0, ± 1)</td>
<td>±1</td>
<td>c</td>
</tr>
<tr>
<td>(± 1, ± 1)</td>
<td>0</td>
<td>d</td>
</tr>
</tbody>
</table>

Pendular states – selection rules

• important: $\vec{\varepsilon} \mu \psi(\theta, \varphi) \sim e^{iM\varphi}$

• for parallel type-bands ($\vec{\mu}_{tr} \parallel z$-axis): $\Delta K = 0$

• for $\vec{\varepsilon} \parallel Z$-axis:
 $\langle \psi_2(\theta, \varphi)|\mu_{tr}\varepsilon\parallel \cos\theta|\psi_1(\theta, \varphi)\rangle$
 $\Delta M = 0$
 - prolate: WF centered at $\theta = 0^\circ$ $\Rightarrow \Delta n$ gerade
 - oblate: WF centered at $\theta = 90^\circ$ $\Rightarrow \Delta n$ ungerade

• for $\vec{\varepsilon} \bot Z$-axis:
 $\langle \psi_2(\theta, \varphi)|\mu_{tr}\varepsilon\bot \sin\theta \cos\varphi|\psi_1(\theta, \varphi)\rangle$
 $\Delta M = \pm 1$
 - prolate: WF centered at $\theta = 0^\circ$
 $\Rightarrow \Delta n$ ungerade
 - oblate: WF centered at $\theta = 90^\circ$ $\Rightarrow \Delta n$ gerade
Pendular states – calculated spectra

Oblate

\[icB = 0.15 \text{ cm}^{-1} \]
\[icB = 0.38 \text{ cm}^{-1} \]

\[\Delta |M|, \Delta |K| = 0,0 \text{ (a); } 1,0 \text{ (b); } 0,1 \text{ (c); } 1,1 \text{ (d)} \]

Prolate

\[cB = 0.15 \text{ cm}^{-1} \]
\[cB = 0.38 \text{ cm}^{-1} \]

\[\Delta M, \Delta K = 0,0 \text{ (a); } \pm 1,0 \text{ (b); } 0,\pm 1 \text{ (c); } \pm 1,\mp 1 \text{ (d)} \]

Pendular states – experimental spectra

- Comparison of experimental and calculated Raman-spectra gives impression of reliability of theory (qualitative agreement)

→ Naphthalene trimer (Prolate case)
 - experimental spectrum: $\vec{\varepsilon}_0 \parallel \vec{\varepsilon}_{laser}$, except for (a)
 Average power of aligning field: 20MW (a,b); 10 MW (c); 4 MW (d); 2 MW (e)
 - calculated spectrum: values correspond to $\Delta \alpha \varepsilon_0^2 / 6B$