Text for the cover

Ingolf V. Hertel

Claus-Peter Schulz
Born 1953 in Berlin, 1984 Diplom in Physics TU Berlin, 1987 Dr. rer. nat. FU Berlin, Postdoc at JILA Boulder CO USA, 1988 Assistent Uni Freiburg, since 1993 Staff Scientist at Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy in Berlin-Adlershof, Extended Research Periods at Université Paris-Nord and Orsay France as well as in Boulder CO USA.

Atoms, Molecules and Optical Physics
These textbooks primarily address advanced students (including PhD students) in physics and physical chemistry. They provide the canonical knowledge in atomic and molecular physics and introduce some basics of modern optics and quantum optics. For a number of selected topics the reader is lead up to the frontiers of present research, and thus the active scientist is addressed too. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters, step by step with the most important phenomena, models and measuring techniques. The text emphasizes the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat light hearted manner. The first volume concentrates on the structure of atoms and on an introduction to modern spectroscopy. The second volume focuses on the structure of molecules and their spectroscopy on the one hand, as well as on collision physics on the other hand – i.e. on the continuum as a necessary counterpart to the bound molecular states. In addition some selected topics from laser physics, modern optics and quantum optics are covered.

In summary, atomic, molecular and optical physics is presented as a highly productive branch of modern physics and indispensable basis for many other areas of physics, chemistry and state-of-the-art material sciences.
Preface

Atomic, Molecular and Optical physics – short AMO physics – is one of the canonical fields of physics, a profound knowledge of which is essential for understanding almost any other area of modern physics. And while its roots reach back over a century and are closely connected with the early days of modern physics, current research in AMO physics is still highly productive in respect of both, cutting edge applications and fundamental insights – as several NOBEL prizes in recent years have documented convincingly.

Looking back at the technical development of modern industrial society – which is closely connected with modern physics – one may refer (COSE, 1998) to the 20th century as that of the electron while the 21st is the century of the photon. This interesting particle, the essential ingredient of modern optics and quantum optics, surprises humankind since Newton with its wave-particle dualism. It does not only play a key role in today’s information technology but is, from a general point of view, also the primary carrier of any information which can be obtained about the constituents of matter and materials. Even collisions of particles with mass under the influence of the Coulomb force may be viewed as exchange of virtual photons.

The textbooks presented here try to give a fairly comprehensive overview on the whole field. They cover state of the art experimental methods, and combine this with preparing the basis for a serious, theory based understanding of key aspects in modern AMO research. The two volumes, originally written in German language (Hertel and Schulz, 2008), are a genuine authors translation – not just an English mirror image of the original. We have rewritten much of the text, extended it wherever appropriate, and updated a number of aspects to catch up with recent progress in the field.

On the one hand we address advanced students of physics, chemistry and other neighbouring fields, typically at the end of their undergraduate studies, or during their doctoral work. On the other hand we also wish to reach young postdocs or even mature scientists, who feel it is time they connect freshly with the topics addressed here. We consider the basics of classical geometrical optics and wave optics as well as electrodynamics to be well known by
our readers. We also expect a certain basic knowledge and understanding of atomistic concepts in physics, as well as of elementary quantum mechanics.

We do, however, provide in Chapters 1 and 2 of this Vol. 1 a brief repetition of these topics – essentially an extended list of keywords focussed on basic understanding and knowledge. In the main part we cover the standard scope of atomic physics, touch some modern aspects of spectroscopy, and try to lead the reader up to state-of-the-art research in some main areas of the field – wherever possible and as far as space permits. The sequence of chapters follows essentially the logics of perturbation theory. The strongest perturbation is treated first. Thus, after the introductory chapters where pure Coulomb interaction and the H atom have been discussed, in Chap. 3 we allow for coarse deviations from the $1/r$ potential and focus on quasi-one-electron systems. This, and some common sense, allows us already to introduce the periodic system of elements. Next, in Chap. 4, we have to treat optically induced and spontaneous transitions: they are a central theme in AMO physics. This requires a brief introduction to time dependent perturbation theory, a topic which is indispensible in AMO physics, but which is often neglected in undergraduate quantum mechanics. To allow the reader a step by step approach towards the more demanding topics, we implement at this point ‘only’ the semiclassical approach – by which 95% of standard atomic physics may be treated (resorting occasionally to somewhat hand waving arguments) – and postpone field quantization to Vol. 2. Chapter 5 further extends this knowledge, treating shapes and widths of spectral lines and introducing multiphoton processes as well as transitions into the continuum. We are now ready to understand in Chap. 6 a next step of complication, fine structure (FS) interaction. In order to allow the reader to appreciate the experimental efforts, we also give a brief introduction to high resolution and precision laser spectroscopy. This leads us automatically to the Lamb shift and calls for a short side step into the basics of quantum electrodynamics (QED). In Chap. 7 two electron systems are treated, mainly the He atom and He like ions. Exchange interaction may be smaller or larger than FS, depending on the system, but the step to multielectron systems adds a new degree of complexity and sets the stage for a quantitative treatment of the Pauli exclusion principle.

The next finer step in the hierarchy of perturbations is treated in Chap. 8, including interactions between atomic electrons and external magnetic and electric fields, leading to Zeeman and Stark effect, respectively. At this point, a small detour into the world of interaction between atoms and very intense laser fields is appropriate, as the theoretical formalism used is essentially an extension of the so called dynamical Stark effect. As a last refinement we include in Chap. 9 hyperfine interactions between the atomic nucleus and electrons. These lead to very small but highly significant splittings of atomic energy levels (HFS) and offer a wealth of practical applications. In the last Chapter 10 of Vol. 1 we are finally ready to treat genuine multi-electron systems with a large number of electrons. We discuss the ap-
appropriate theoretical tools (such as HF equations, CI methods, and DFT), and present some relevant methods of X-ray spectroscopy and sources for generating X-ray radiation.

As rule, we try to avoid extensive mathematical derivations. Rather, in the 'spirit of these books' we prefer to give the reader some general guidance on how to reach the final, physically important results – which we discuss and illustrate usually in some detail. In addition, we provide several appendices for the reader interested in more detail. We have e.g. collected a toolbox for angular momentum algebra in atomic and molecular physics – without any claim for full mathematical consistancy, but quite compact and possibly useful in practice.

Some words about formats, notation, units, typography appear in order:

- Each chapter begins with a brief “motto” setting the tune of the chapter, followed by short abstract guiding the reader through the text. At the end of each section a short summary recalls what the readers should have learned from the preceding text. All chapters build upon each other, but may be read by advanced readers also individually: this is facilitated by intensive cross referencing of formulas and figures, an extended index covering both volumes, a list of acronyms and important terminology as well as references at the end of each chapter.
- For clarity and homogeneity we do not reproduce original drawings or other material from the literature. Rather, all published data have been redrawn (after digitalization if necessary), are presented in a standard format, and all sources used in the figures and text are properly quoted.
- We consequently use the SI-System for all measurable quantities, and we emphasize the pedagogical and practical value of a “dimensional analysis” for complex physical formulas.\(^1\) On the other hand, atomic units (a.u.) facilitate the writing of many relations in atomic and molecular physics dramatically. Hence, we use them intensively – considering, however, \(E_h\), \(a_0\) and \(t_0\) etc. simply as abbreviations for quantities with dimensions. Phrasings such as “we set \(\hbar, e, m_e, c\) equal to unity” are avoided, since they are highly misleading.
- The finite number of letters in the latin and greek alphabets makes some inconsistencies or unusual designations unavoidable: we mention specifically, that in order to allow the use of \(E\) for the electric field strength (an important quantity in AMO) we use \(W\) (with appropriate indices) for energies of various types (with the exception of the atomic unit of energy which is internationally defined as \(E_h\)). Occasionally we use the letter \(T\) for kinetic energy and try to avoid the neighbourhood of time and temperature which are often also designated by \(T\). Vectors are written as \(\mathbf{r}\).

\(^1\) We make, however, use of allowed prefixes (NIST, 2000a), such as \(\text{cm}^{-1}\) as unit of wavenumbers (which appears ineradicable in the literature). We also use “accepted” units outside the SI (NIST, 2000b), such as the enormously practical energy unit \(\text{eV}\) (electron-volt), or \(\text{b}\) (barn) as unit for cross sections.
or \(k \), unit vectors in these directions are \(e_r \) and \(e_k \), respectively. We write operators as \(\hat{H} \), vector-operators as \(\hat{p} \) and tensors of rank \(k \) as \(C_k \). For the unit operator and unit matrix we use \(\hat{1} \). For integer numbers we mostly use calligraphic letters such as \(\mathcal{N} \), while number densities are simply \(N \) to distinguish them from the index of refraction \(n \) which is also an often used quantity throughout this text. Oscillations and other periodic processes are mostly characterized by their angular frequencies \(\omega \) (sometimes also by their frequencies \(\nu \)) and the corresponding energies are \(\hbar \omega \) (or \(h \nu \)).

Finally, we hope that these books will become a continuing source of reference for the fastidious reader, working in or just needing to use AMO physics in her or his special field. We ask all of you to kindly provide us with the necessary feedback. We shall try to react to useful suggestion promptly. At the homepage of the books, http://www.mbi-berlin.de/AMO/book-homepage, we shall continuously report on the status, list errata and possibly present additions. For additional reading and cross referencing we have collected a few related textbooks and monographies in the reference list below, just as typical examples without any claim for completeness.

Berlin Adlershof, January 2014

Ingolf V. Hertel and Claus-Peter Schulz

Acronyms and terminology

a.u.: ‘atomic units’, (see Chap. 2, p. 115).
CI: ‘Configuration interaction’, mixing of states with different electronic configurations in atomic and molecular structure calculations, using linear superposition of SLATER determinants (see Chap. 10, p. 508).
FS: ‘Fine structure’, splitting of atomic and molecular energy levels due to spin orbit interaction and other relativistic effects (Chap. 6).
HF: ‘HARTREE-FOCK’, method (approximation) for solving a multi-electron SCHRÖDINGER equation, including exchange interaction.
HFS: ‘Hyperfine structure’, splitting of atomic and molecular energy levels due to interactions of the active electron with the atomic nucleus (Chap. 9).
NIST: ‘National institute of standards and technology’, located at Gaithersburg (MD) and Boulder (CO), USA. http://www.nist.gov/index.html.
References

Acknowledgements

Over the past years, many colleagues have encouraged and stimulated us to move forward with this work, and helped with many critical hints and suggestions. Most importantly, we have received a lot of helpful material and state of the art data for inclusion in these textbooks.

We would like to thank all those who have in one or the other way contributed to close a certain gap in the standard textbook literature in this area – that is at least what we hope to have achieved. Specifically we mention Robert Bittl, Wolfgang Demtroeder, Melanie Dornhaus, Kai Godehusen, Uwe Griebner, Hartmut Hotop, Marsha Lester, John P. Maier, Reinhardt Morgenstern, Hans-Hermann Ritze, Horst Schmidt-Boecking, Ernst J. Schumacher, Guenter Steinmeyer, Joachim Ullrich, Marc Vrakking und Roland Wester; their contributions are specifically noted in the respective lists of references.

Of course, there all other sources are documented which we have used for informations and which have provided data which we have used to generate the figures in these books.

One of us (IVH) is particularly grateful to the Max-Born-Institute for providing the necessary resources (including computer facilities, library access, and office space etc.) for continuing the work on this book after official retirement.
Contents
Contents

Volume I Atoms and Spectroscopy

Preface Vol. 1 ... viii
Acronyms and terminology ... xii
References ... xiii

1 Basics ... 1
 1.1 Overview, history and magnitudes 1
 1.1.1 Quantum nature of matter 2
 1.1.2 Orders of magnitude 5
 1.2 Special theory of relativity in a nutshell 9
 1.2.1 Kinematics and dynamics 9
 1.2.2 Time dilation and Lorentz contraction 12
 1.3 Some elementary statistics and applications 13
 1.3.1 Spontaneous decay and mean lifetime 14
 1.3.2 Absorption, Lambert-Beer law 16
 1.3.3 Kinetic gas theory 17
 1.3.4 Classical and quantum statistics
 – fermions and bosons 19
 1.4 The photon ... 25
 1.4.1 Photoelectric effect and quantization of energy ... 26
 1.4.2 Compton effect and momentum of the photon 27
 1.4.3 Pair production 29
 1.4.4 Angular momentum and mass of the photon 29
 1.4.5 Electromagnetic spectrum 30
 1.4.6 Planck’s radiation law 30
 1.4.7 Solar radiation on the earth 33
 1.4.8 Photometry – luminous efficiency and efficacy ... 36
 1.4.9 X-ray diffraction and structural analysis 39
 1.5 The four fundamental interactions 42
 1.5.1 Coulomb and gravitational interaction 44
 1.5.2 The standard model of fundamental interaction 45
 1.5.3 Hadrons .. 47
 1.5.4 The electron .. 49
 1.6 Particles in electric and magnetic fields 51
 1.6.1 Charge in an electric field 51
 1.6.2 Charge in a magnetic field 52
 1.6.3 Cyclotron frequency and ICR spectrometers 53
 1.6.4 Other mass spectrometers 54
 1.6.5 Plasma frequency 55
 1.7 Particles and waves ... 56
 1.7.1 De Broglie wavelength 56
 1.7.2 Experimental evidence 57
 1.7.3 Uncertainty relation and measurement 60
 1.7.4 Stability of the atomic ground state 62
Contents

1.8 BOHR model of the atom 64
 1.8.1 Basic assumptions 64
 1.8.2 Radii and energies 66
 1.8.3 Atomic units (a.u.) 66
 1.8.4 Energies of hydrogen like ions 67
 1.8.5 Correction for finite nuclear mass 67
 1.8.6 Spectra of hydrogen and hydrogen like ions 68
 1.8.7 Limits of the BOHR model 68
1.9 STERN-GERLACH experiment 69
 1.9.1 Magnetic moment and angular momentum 70
 1.9.2 Magnetic moment in a magnetic field 70
 1.9.3 The experiment 71
 1.9.4 Interpretation of the STERN-GERLACH experiment .. 74
 1.9.5 Consequences of the STERN-GERLACH experiment ... 75
1.10 Electron spin .. 77
 1.10.1 Magnetic moment of the electron 77
 1.10.2 EINSTEIN-DE-HAAS effect 78
Acronyms and terminology 80
References .. 82

2 Elements of quantum mechanics 85
 2.1 Matter waves .. 85
 2.1.1 Limits of classical theory 85
 2.1.2 Probability amplitudes in optics 86
 2.1.3 Probability amplitudes and matter waves 87
 2.2 SCHRÖDINGER equation 88
 2.2.1 Stationary SCHRÖDINGER equation 89
 2.2.2 HAMILTON and momentum operators 89
 2.2.3 Time dependent SCHRÖDINGER equation 90
 2.2.4 Freely moving particle – the most simple example .. 92
 2.3 Basics and definitions of quantum mechanics 93
 2.3.1 Axioms, terminology and rules 93
 2.3.2 Representations 97
 2.3.3 Simultaneous measurement of two observables ... 98
 2.3.4 Operators for space, momentum and energy .. 99
 2.3.5 Eigenfunctions of the momentum operator \(\hat{p} \) 99
 2.4 Particles in a box – and the free electron gas 101
 2.4.1 One dimensional potential box 101
 2.4.2 Three dimensional potential box 102
 2.4.3 The free electron gas 103
 2.5 Angular momentum 105
 2.5.1 Polar coordinates 105
 2.5.2 Definition of orbital angular momentum 106
 2.5.3 Eigenvalues and eigenfunctions 107
 2.5.4 Electron spin 111
2.6 One electron systems and the hydrogen atom

2.6.1 Quantum mechanics of the one particle system

2.6.2 Atomic units

2.6.3 Centre of mass motion and reduced mass

2.6.4 Qualitative considerations

2.6.5 Exact solution for the H atom

2.6.6 Energy levels

2.6.7 Radial functions

2.6.8 Density plots

2.6.9 Spectra of the H atom

2.6.10 Expectation values of r^k

2.6.11 Comparison with the BOHR model

2.7 Normal ZEEMAN effect

2.7.1 Angular momentum in an external B-field

2.7.2 Removal of m degeneracy

2.8 Dispersion relations

References

Acronyms and terminology

3 Periodic system and removal of ℓ degeneracy

3.1 Shell structure of atoms and the periodic system

3.1.1 Electron configuration

3.1.2 PAULI principle

3.1.3 How the shells are filled

3.1.4 The periodic system of elements

3.1.5 Some experimental facts

3.2 Quasi-one-electron system

3.2.1 Spectroscopic findings for the alkali atoms

3.2.2 Quantum defect

3.2.3 Screened COULOMB potential

3.2.4 Radial wave functions

3.2.5 Precise calculations for Na as an example

3.2.6 Quantum defect theory

3.2.7 MOSLEY diagrams

3.3 Perturbation theory for stationary problems

3.3.1 Perturbation ansatz for the non-degenerate case

3.3.2 Perturbation theory in 1st order

3.3.3 Perturbation theory in 2nd order

3.3.4 Perturbation theory for degenerate states

3.3.5 Application of perturbation theory to alkali atoms

References

Acronyms and terminology
5.1.5 VOIGT profile ... 236
5.2 Oscillator strength and cross section 237
 5.2.1 Transition rates generalized 237
 5.2.2 Oscillator strength 238
 5.2.3 Absorption cross section 240
 5.2.4 Different notations – radiative-transfer in gases .. 242
5.3 Multi-photon processes 244
 5.3.1 Two-photon excitation 245
 5.3.2 Two-photon emission 248
5.4 Magnetic dipole and electric quadrupole transitions ... 250
5.5 Photoionization ... 254
 5.5.1 Process and cross section 255
 5.5.2 BORN approximation for photoionization 257
 5.5.3 Angular distribution of photoelectrons 260
 5.5.4 Cross sections in theory and experiment 261
 5.5.5 Multi-photon ionization (MPI) 265
Acronyms and terminology 270
References .. 271

6 Fine structure and LAMB shift 273
 6.1 Methods of high resolution spectroscopy 273
 6.1.1 Grating spectrometers 273
 6.1.2 Interferometers 277
 6.1.3 DOPPLER free spectroscopy in atomic beams 281
 6.1.4 Collinear laser spectroscopy in ion beams 283
 6.1.5 Hole burning 284
 6.1.6 DOPPLER free saturation spectroscopy 285
 6.1.7 RAMSEY fringes 288
 6.1.8 DOPPLER free two-photon spectroscopy 289
 6.2 Spin-orbit interaction 293
 6.2.1 Experimental findings 293
 6.2.2 Magnetic moments in a magnetic field 294
 6.2.3 General considerations about LS interaction .. 295
 6.2.4 Magnitude of spin-orbit interaction 296
 6.2.5 Angular momentum coupling 297
 6.2.6 Terminology for atomic structure 301
 6.3 Quantitative determination of fine structure 303
 6.3.1 FS terms from DIRAC theory 303
 6.3.2 Fine structure of the H atom 306
 6.3.3 Fine structure of alkali and other atoms 307
 6.4 Selection rules and intensities of transitions 309
 6.5 LAMB shift .. 315
 6.5.1 Fine structure and LAMB shift for the Hα line .. 315
 6.5.2 Microwave transitions 316
 6.5.3 Experiment of LAMB and RETHERFORD 316
6.5.4 Precision spectroscopy of the H atom 318
6.5.5 LAMB shift in highly charged ions 322
6.5.6 QED and FEYNMAN diagrams 324
6.5.7 On the theory of the LAMB shift 326
6.6 Electron magnetic moment anomaly 330
Acronyms and terminology 336
References .. 337

7 Helium and other two electron systems 341
 7.1 Introduction and empirical findings 341
 7.1.1 Basics .. 341
 7.1.2 He I term scheme 342
 7.2 Some quantum mechanics of two electrons 344
 7.2.1 HAMILTON operator for the two-electron system ... 344
 7.2.2 Two particle wave functions 345
 7.2.3 Zero order approximation: no e−e− interaction ... 346
 7.2.4 The He ground state – perturbation theory ... 348
 7.2.5 Variational theory and present state-of-the-art ... 350
 7.3 PAULI principle and excited states in He 351
 7.3.1 Exchange of two identical particles 351
 7.3.2 Symmetries of spatial and spin wave functions ... 352
 7.3.3 Perturbation theory for (singly) excited states . 355
 7.3.4 An afterthought 358
 7.4 Fine Structure 360
 7.5 Electric dipole transitions 362
 7.6 Double excitation and autoionization 365
 7.6.1 Doubly excited states 365
 7.6.2 Autoionization, FANO profile 366
 7.6.3 Resonance line profiles 369
 7.7 Quasi-two-electron systems 371
 7.7.1 Alkaline earth elements 371
 7.7.2 Mercury 372
Acronyms and terminology 374
References .. 374

8 Atoms in external fields 377
 8.1 Atoms in a static magnetic field 377
 8.1.1 The general case 377
 8.1.2 ZEEMAN effect in low fields 379
 8.1.3 PASCHEN-BACK effect 384
 8.1.4 Do angular momenta actually precess? 386
 8.1.5 In between low and high magnetic field 388
 8.1.6 Avoided crossings 392
 8.1.7 Paramagnetism 394
 8.1.8 Diamagnetism 396
8.2 Atoms in an electric field ... 399
 8.2.1 Introduction ... 399
 8.2.2 Significance .. 399
 8.2.3 Atoms in a static, electric field 400
 8.2.4 Basic considerations about perturbation theory 401
 8.2.5 Matrix elements ... 402
 8.2.6 Perturbation series ... 404
 8.2.7 Quadratic STARK effect 405
 8.2.8 Linear STARK effect ... 406
 8.2.9 An example: RYDBERG states of Li 409
 8.2.10 Polarizability .. 411
 8.2.11 Susceptibility .. 413
8.3 Long range interaction potentials 414
8.4 Atoms in an oscillating electromagnetic field 418
 8.4.1 Dynamic STARK effect .. 418
 8.4.2 Index of refraction .. 420
 8.4.3 Resonances – dispersion and absorption 420
 8.4.4 Fast and slow light ... 422
 8.4.5 Elastic scattering of light 427
8.5 Atoms in a high laser field 431
 8.5.1 Ponderomotive potential 432
 8.5.2 KELDIH parameter ... 434
 8.5.3 From MPI to saturation .. 434
 8.5.4 Tunnelling ionization ... 436
 8.5.5 Recollision .. 437
 8.5.6 High harmonic generation (HHG) 439
 8.5.7 Above-threshold ionization in high laser fields 440
Acronyms and terminology ... 442
References ... 443

9 Hyperfine structure .. 447
 9.1 Introduction ... 447
 9.2 Magnetic dipole interaction 451
 9.2.1 General considerations and examples 451
 9.2.2 The magnetic field of the electron cloud 454
 9.2.3 Nonvanishing orbital angular momenta 456
 9.2.4 The FERMI contact term 458
 9.2.5 Some numbers .. 459
 9.2.6 Optical transitions between HFS multiplets 460
 9.3 ZEEMAN effect of hyperfine structure 461
 9.3.1 Hyperfine Hamiltonian with magnetic field 461
 9.3.2 Low magnetic fields .. 462
 9.3.3 High and very high magnetic fields 464
 9.3.4 Arbitrary fields, BREIT-RABI formula 466
 9.4 Isotope shift and electrostatic nuclear interactions 470
Contents

A Constants, units and conversions 552
 A.1 Fundamental physical constants and units 552
 A.2 SI and atomic units 555
 A.3 SI and G\textsc{auss} units 556
 A.4 Radian and steradian 557
 A.5 Dimensional analysis 558
 Acronyms and terminology 559
 References ... 559

B Angular momenta, 3j and 6j symbols 561
 B.1 Angular momenta .. 561
 B.1.1 General definitions 561
 B.1.2 Orbital angular momenta – spherical harmonics 564
 B.2 Coupling of two angular momenta 566
 B.2.1 Definitions ... 566
 B.2.2 Orthogonality and symmetries 567
 B.2.3 General formulae 568
 B.2.4 Special cases .. 568
 B.3 R\textsc{ach} function and 6j symbols 570
 B.3.1 Definition .. 570
 B.3.2 Orthogonality and symmetries 571
 B.3.3 General formulae 572
 B.3.4 Special cases .. 573
 B.4 Four angular momenta and 9j symbols 573
 Acronyms and terminology 574
 References ... 574

C Matrix elements .. 576
 C.1 Tensor operators ... 576
 C.1.1 Definition ... 576
 C.1.2 Wigner-Eckart theorem 577
 C.2 Products of tensor operators 579
 C.2.1 Products of spherical harmonics 580
 C.2.2 Matrix elements of the spherical harmonics 581
 C.3 Reduction of matrix elements 583
 C.3.1 Matrix elements of the spherical harmonics in \textit{LS}
 coupling ... 584
 C.3.2 Scalar products of angular momentum operators 586
 C.3.3 Components of angular momenta 587
 C.4 Electromagnetically induced transitions 589
 C.4.1 Electric dipole transitions 589
 C.4.2 Electric quadrupole transitions 589
 C.4.3 Magnetic dipole transitions 590
 C.5 Radial matrix elements 591
 Acronyms and terminology 593
Contents

References .. 594

D Parity and reflection symmetry 595
D.1 Parity .. 595
D.2 Multi-electron systems 596
D.3 Reflection symmetry of orbitals 597
D.4 Reflection symmetry in the general case 601
Acronyms and terminology 605
References .. 605

E Coordinate rotation 606
E.1 EULER angles ... 606
E.2 Rotation matrices .. 607
E.3 Entangled states .. 610
E.4 Real rotation matrices 611
References .. 612

F Multipole expansions and multipole moments 613
F.1 Laplace expansion .. 613
F.2 Electrostatic potential 614
F.3 Multipole tensor operators 616
 F.3.1 The quadrupole tensor 617
 F.3.2 General multipole tensor operators 619
Acronyms and terminology 621
References .. 621

G Convolutions and correlation functions 623
G.1 Definition and motivation 623
G.2 Correlation functions and degree of coherence 625
G.3 Gaussian profile ... 626
G.4 Hyperbolic secant .. 628
G.5 LORENTZ profile ... 628
G.6 VOIGT profile .. 629
Acronyms and terminology 629
References .. 630

H Vector potential, dipole approximation, oscillator strength 631
H.1 Electron in the field of an electromagnetic wave 631
 H.1.1 Vector potential 631
 H.1.2 Intensity ... 632
 H.1.3 Static magnetic field 633
 H.1.4 Relation between matrix elements of \(p \) and \(r \) 634
 H.1.5 Ponderomotive potential 634
 H.1.6 Series expansion of the perturbation
 and the dipole approximation 635
H.2 Line strength and oscillator strength 637
Contents

- H.2.1 Definitions ... 637
- H.2.2 THOMAS-REICHE-KUHN sum rule 639
- Acronyms and terminology 640
- References ... 641

I FOURIER transform .. 642
- I.1 Short summary on FOURIER transforms 642
- I.2 How electromagnetic fields are written 645
- I.3 The intensity spectrum 646
- I.4 Examples ... 648
 - I.4.1 Gaussian distribution 648
 - I.4.2 Hyperbolic secant 649
 - I.4.3 Rectangular wave-train 650
 - I.4.4 Rectangular spectrum 651
 - I.4.5 Exponential and LORENTZ distributions 651
- I.5 Fourier transform in three dimensions 654
- Acronyms and terminology 656
- References ... 656

J Continuum .. 657
- J.1 Normalization of continuum wave functions 657
- J.2 Plane waves in 3D .. 659
- Acronyms and terminology 661
- References ... 661